
Noname manuscript No.
(will be inserted by the editor)

SmartDL: Energy-Aware Decremental Learning in a
Mobile-based Federation for Geo-spatial System

Wenting Zou · Li Li · Zichen Xu* · Dan
Wu* · ChengZhong Xu · Yuhao Wang ·
Haoyang Zhu · Xiao Sun

Received: date / Accepted: date

Abstract Federated learning is designed to collaboratively train a shared
model based on a great many mobile devices while protecting data privacy,
which has been widely adopted to support different geo-spatial systems. How-
ever, two critical issues prevent federated learning to be effectively deployed
on resource-constrained devices in large scale. First, federated learning causes
high energy consumption which can badly hurt the battery lifetime of mobile
devices. Second, leakage of sensitive personal information still occurs during
the training process. Thus, a system that can effectively protect the sensitive
information while improving the energy efficiency is urgently required for a
mobile-based federated learning system.

The corresponding authors are Zichen Xu (xuz@ncu.edu.cn) and Dan Wu (wu-
dan@ncu.edu.cn). The first two authors contribute equally to this work. Wenting Zou was
a visiting student in SIAT.
Wenting Zou
Nanchang University, China CITIC Bank

Li Li
ShenZhen Institute of Advanced Technology, Chinese Academy of Sciences

Zichen Xu
Nanchang University

Dan Wu
Nanchang University

ChengZhong Xu
University of Macau

Yuhao Wang
Nanchang University

Haoyang Zhu
Institute of Systems Engineering

Xiao Sun
Institute of Systems Engineering



2 Wenting Zou et al.

This paper proposes SmartDL, an energy-aware decremental learning frame-
work that well balances the energy efficiency and data privacy in an efficient
manner. SmartDL improves the energy efficiency from two levels: 1) global
layer, which adopts an optimization approach to select a subset of participat-
ing devices with sufficient capacity and maximum reward. 2) local layer, which
adopts a novel decremental learning algorithm to actively provides the decre-
mental and incremental updates, and can adaptively tune the local DVFS at
the same time. We prototyped SmartDL on physical testbed and evaluated
its performance using several learning benchmarks with real-world traces. The
evaluation results show that compared with the original federated learning,
SmartDL can reduce energy consumption by 75.6%-82.4% in different datasets.
Moreover, SmartDL achieves a speedup of 2-4 orders of magnitude in model
convergence while ensuring the accuracy of the model.

Keywords Federated Learning · Data Privacy · Energy Management ·
Mobile Computing

1 Introduction

Federated learning (FL) [1] is a booming distributed learning technique which
collaboratively trains a deep learning model based on the data located on mul-
tiple devices. During the overall training process, the private data is always
saved on the local devices to protect the privacy. Thus, the FL technique has
been widely adopted to support different kinds of privacy-concerned applica-
tions, such as Geospatial Information Analysis [2] etc. Specifically, the common
feature of these applications is that the participating devices only communi-
cate with the central server using the meta data, e.g., model gradients. In
this way, federated learning can alleviate the problem of privacy leak to a
certain extent. Internet companies such as Google, Amazon, and Facebook,
use the federated learning framework in their learning to conquer the privacy
conscious data market with a net worth of $200 billion [3].

Under the premise of protecting user privacy, federated learning also sup-
ports the co-building models between multiple devices. In a federated learning
based geo-spatial system, each device can save a copy of local geo-spatial data
object and different versioned model. Usually, a small group of devices are
called servers, which can publish the master model and calculate the align-
ment between all trained local models. The remaining devices are called work-
ers, which subscribe models from servers and repeat the training process in-
synchronous manner (i.e., federation). Therefore, federated learning can con-
verge after retraining the target model in a sufficient time without exchanging
original data objects among devices. In theory, the federated learning frame-
work is expected to expand to millions to billions of devices [4].

In fact, due to the following two main reasons, this simple federated learn-
ing framework can be expensive and may still leak privacy. First, the original
federated learning implicitly assumes that the model to be trained is simple
enough and all synchronized workers can make a training response within a
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specified time, so that the servers can complete the model convergence compu-
tation within a given time threshold. However, this kind of collaborative learn-
ing behavior can reveal the private geo-spatial information of users through
model inverse reasoning. In addition, the model itself may be complex, leading
to a possible consequence that the model cannot converge. Second, workers,
e.g., mobile devices may spend a lot of resources on model training, which af-
fects the response time and ultimately the service-level objective (SLO). When
federated learning was first proposed [5], it was assumed that the models are
only trained under the condition of plug-in and WiFi connection. However, this
statement prevents analyzing geo-spatial data at a fined-grained granularity in
a timely manner, violates the ubiquitousness of mobile devices and the purpose
of adapting to distributed learning. In addition, a key performance metric of
today’s machine learning systems [6–9] is realtimeliness. However, mobile de-
vices that train local fresh geo-spatial data in real-time consume large amount
of battery energy. When scaling-out, this expensive energy consumption dur-
ing the training process would increase exponentially, not to mention millions
of mobile devices involved, powered by batteries [10]. Therefore, a practical
federated learning framework for geo-spatial system should intelligently adapt
to privacy issues and take energy efficiency into consideration.

In order to solve the above challenges, it is necessary to analyze and further
understand the nature of federated learning. Firstly, We provide research on
understanding the state-of-the-practice FL frameworks on several applications.
Based on our research, we have drawn the following two important observa-
tions: (1) In the history of model training, due to the model complexity and
computational cost, we expect the entire framework to start a simple model
with a näıve configuration. However, when scaling-out in federated learning,
not all workers are active with the same degree. Thus, the FL framework may
allow workers to forget some trained features of the geo-spatial data at any
time. In other words, the model version in each worker may be different, which
is equivalent to a situation where all workers are online but not all of their
model versions have been updated. This allows us to provide a trade-off when
publishing aligned models to workers at the beginning of each training round.
We can select a subset of workers to participate without waking up all devices
to reduce energy consumption and maximize the possible reward. The opti-
mization process can reduce the delay and speed up the convergence, thereby
reducing local energy consumption. (2) In order to further illustrate the con-
cern about the privacy leak in a federated learning framework, we not only
allow each worker to delete its sensitive old geo-spatial data, but also allow
the model to remove the learned sensitive features. We call this operation “for-
gets”. This technique is often seen as decremental learning in the community.
This technology can be used in conjunction with the local energy manage-
ment in the system kernel. When the worker is forgetting, we can regard it
as a control signal to wake the energy management unit when the computa-
tion demand decreases. In this way, we can combine the decremental learning
algorithm with previously used system energy management techniques, such
as dynamic voltage and frequency scaling (DVFS), process migration, and IC
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thermal shutdown, so that we can not only improve model training time, but
also reduce local energy. These two observations and derived approaches are
the key to provide an energy efficient and forget federated learning system
that forgets.

According to the aforementioned findings, we present an energy-aware
decremental learning framework (SmartDL) which uses decremental learning
and energy-saving techniques to well balance the following three factors during
the training process incuding: 1) model accuracy, 2) data privacy and 3) energy
efficiency. In order to reduce the overall energy consumption from the feder-
ated learning, SmartDL serves a two-layered design. When the server creates a
learning job, SmartDL triggers an optimization process that models all candi-
date devices as a multi-armed bandit (MAB) problem, and solves the problem
to maximize the target reward (training delay, data volume, and energy con-
sumption). In this way, the entire process can be learned while ensuring perfor-
mance. When the learning begins, SmartDL designs a local middleware layer,
which is based on a specific model and carefully manages the local learning pro-
cess with incremental and decremental updates. SmartDL intelligently tunes
local power state of mobile devices during the decremental learning process.
When SmartDL makes a wrong decision in decremental update or prediction,
SmartDL can recover the model in corresponding decremental and incremental
update algorithm to solve the problem. We have prototyped SmartDL in cur-
rent mobile operating systems, which supports multiple learning frameworks.
The prototype uses machine learning models widely used in real-time ma-
chine learning systems for evaluation. The results show that compared with
the classic federated learning, SmartDL can reduce energy consumption by
75.6%-82.4% in all workloads. In addition, SmartDL achieves a speedup of
2-4 orders of magnitude in model convergence while ensuring the accuracy of
the model. SmartDL can significantly reduce the learning completion time up
to 2-4 orders of magnitude, compared to the classic federated learning frame-
work. In all state-of-the-practice baselines, our design shows a 75.6%–82.4%
less energy use in all workloads.

The contribution of our work is summarized as follows,

– We reveal the high resource use and privacy leak in the federated learning
system on mobile devices for geo-spatial system.

– We propose an energy-aware decremental learning framework (SmartDL)
for geo-spatial system, which reduces energy consumption through a two-
layer design. The framework performance is provided with a worst-case
mathematical guarantee.

– We prototype SmartDL on the physical testbed and simulation platform,
and evaluated its performance with several learning benchmarks with real-
world traces. Compared with the classic federated learning, SmartDL can
save 75.6%-82.4% energy consumption and achieve a speedup of 2-4 orders
of magnitude in model convergence while ensuring the accuracy of the
model.
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The remaining section of the paper is organized as follows. Section 2
introduces the background about our concerns that motivate the design of
SmartDL. Section 3 discusses the system design and implementation. Section
4 and 5 present the evaluation and related work, respectively. Then Section 6
concludes the paper.

2 Risen Awareness of Privacy and Resource Use Concern

In this section, we first introduce the working principle of federated learning.
Then, we use a real-world example to illustrate the potential privacy leak
of federated learning. Finally, we discuss the use of resources in federated
learning.
Federated Learning. Federated learning aims to use private data on differ-
ent edge devices to collaboratively train shared models while protecting data
privacy. The specific working principle usually includes the following steps:

1. Workers selection: In the initialization phase, the server selects a group of
mobile candidates (i.e., workers) that meet the requirements to participate
in the current round of training process.

2. Model broadcast: The server broadcasts the current global model status
(such as model parameters) to all workers.

3. Local training: Each worker starts local training with the current state of
the shared model and the local data.

4. Parameter aggregation: After completing the local training process, each
work sends the model parameters to the server for parameter aggregation.

5. Model update: After the server receives the model parameters sent by
workers, the server updates the model according to the received parame-
ters. After that, the training enters the next round.

6. Model convergence: Iterate the entire training process until the shared
model converges.

Note that, the entire training time is not important for each worker, because
the job can be throttled. However, if the training time of some workers is ex-
tended, the entire training process may take longer to converge. This is because
in each round of training, the original federated learning framework adopts a
synchronous mode. In the synchronized state, all training threads keep the
device awake, which will generate a lot of energy consumption. Therefore, the
training completion time of each worker is crucial to the entire process of
federal learning, and makes FL very expensive at scale-out.
Privacy in Learning. Here, we use a real-world example to introduce the
problem of privacy leak in the process of federated learning, as shown in Figure
1. The Retailrocket [11] e-commerce dataset now covers 32,000 de-identified
users. It contains some historical records of these users, such as web pages
viewed, items added to the shopping cart, and four-month transactions, and so
on. Some of these users (such as user A) have repeatedly included the following
content in their historical browsing records: The Godfather, Titanic, Flipped,
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Fig. 1: A possible privacy leak from federated learning, when the original data
are deleted. Devices can still reveal the behavior and some privacy guess from
user A.

and Linear Algebra. All the information is related to personal privacy, this
information is sensitive. Regulations, such as European General Data Protec-
tion Regulation (GDPR) [12], give users the right to remove all these sensitive
data. However, when user A deletes some records, it only deletes data from
data storage such as a database. Federated learning can still reveal private
user information based on model clustering. For example, Federated Learn-
ing collects some transaction history and browsing records from all users, and
calculates a similarity matrix between different users. We can use a simple
Jaccard similarity [13] to calculate the similarity distance. This similarity ma-
trix can be used for personal ranked item recommendation. Unfortunately, we
can still guess the deleted browsing history of user A. The similarity matrix
shown in Figure 1 shows that the average similarity between user A and some
users is very high, such as the user B and the user C with a similarity of 0.81
and 0.917, respectively. We can view the undeleted browsing history of user B
and user C, and use their information to recover user A’s deleted information,
Flipped, Titanic and The Godfather. Thus, it can be concluded that we may
still obtain these overlapping sets through clustering to reveal personal pri-
vacy. Thus, we can find that the existing Federated Learning framework still
contains privacy issues.
System Resource Use in Federated Training. In the federated training,
there are two main problems, high energy consumption and unnecessary mem-
ory usage. As we have already explained in Section 1, all workers in the fed-
erated learning framework are usually battery-powered edge devices. Previous
work [14] has revealed that a federated learning process consumes heavy energy
consumption, shortening the overall device service time by 40%. Bonawitz et
al. [15] believe that this is only a technical problem, because they assume that
the learning models are only trained while the device is plug-in or with WiFi
connection. But this assumption violates two important features of federated



Title Suppressed Due to Excessive Length 7

Global 

Selection

Local Learning 

and Control

PUB SUB

Server

Workers

Data Objects

Forget

Candidates

Component Function Device

Model

Device Stats

Create

Input

Control

Fig. 2: The system diagram of SmartDL.

learning: (1) freshness of the data objects to be trained; (2) the ubiquity of
mobile devices. In addition, that federated learning only happens when plug-in
or WiFi connection prevents scale-out. Any unnecessary energy consumption
in a single device may affect all other workers, leading to exponential energy
waste. In addition, during the training process, the learning process needs to
retrieve all local data repeatedly from the memory or secondary storage, which
can cause a large number of page replacements, and then these page replace-
ments can cause additional delay and unnecessary memory usage. Therefore,
in order to solve these existing problems, we need to understand the energy
consumption and memory usage in the local training, and design an effective
framework that can be used to elastically manage the data in memory, while
flexibly selecting enough devices for each training and managing all devices
coupled with the energy management policy.

3 Design and Implementation

In the previous section 2, we have discussed the privacy and resource use
concerns in the current federated learning framework. In this section, we in-
troduce SmartDL, then analyze our system modeling from the global and local
metrics, and finally elaborate global selection optimization and local control
with the decremental learning feature.

3.1 System Overview

We show the architecture overview of SmartDL in Figure 2. SmartDL is com-
posed of a global layer and a local layer. The global layer provides a selection
and optimization process with the MAB algorithm, while the local layer man-
ages local decremental learning through incremental and decremental updates
and the related energy control. The details are as follows.
Global Layer. SmartDL supports federated learning in a client-server man-
ner. In the global selection of the Component as shown in Figure 2, when
the server creates a learning job, SmartDL selects a subset of workers N =
{1, 2, ...N} from all live candidates based on the device stats. In this subset, all
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workers should have required training data D, and have enough computing re-
sources to complete the learning job and get a reward X. In this optimization
process, SmartDL will maximize this reward. In the Device as shown in Figure
2, SmartDL initializes the federated learning setup in a PUB/SUB model. The
server notifies all selected workers to receive the model to be trained through
the PUB method. Gradually, each worker completes its local training and sends
model gradients back through SUB methods. Workers can leave at any time
during this process. SmartDL allows the server to communicate with workers
through the SUB method regularly, and starts the convergence process when
the server receives the signal sent back by most of the workers or reaches Time
to Live (TTL).
Local layer. In the local learning and control of the Component as shown in
Figure 2, each worker introduces a hyperparameter θ, which means how much
data one worker should “forget” [16]. Thus, as shown in Figure 1, although we
still calculate similarity models between users, SmartDL overwrites the model
with newly arrived data and forgets the deleted data, as well as their impact
in the model after a certain period of time. In this way, we not only allow the
balance between improving the model training time and reducing local energy
consumption, but also better protect the data privacy of each worker.

It is worth to note that During the federated learning process, the par-
ticipating devices consume computing and communication resources. Thus,
they are usually reluctant to participate in the training process if the corre-
sponding rewards are not retrieved. Existing work [17] has proposed different
incentive mechanisms to motivate devices to actively and reliably participate
in the Federated Learning process. These incentive strategies can be directly
adopted by SmartDL. Moreover, SmartDL tries to solve a different problem
which tries to well balance the following three factors during the training pro-
cess including: 1) energy efficiency, 2) model accuracy and 3) data privacy. In
short, SmartDL shows a two-level design, globally and locally, that optimizes
the energy efficiency and privacy in federated learning. Next, we introduce our
system modeling in these two layers.

3.2 System Modeling

As shown in Figure 2, our global optimization process assumes that each fed-
erated learning job always begins from the server side. Each server receives
SUB signals sent by all candidate devices, which contains a profile on the
local data volume, available resource, and their battery capacity. We model
all variables as global and local metrics respectively. In the global metrics, we
find the most suitable subset of one federated learning process based on device
statistics, data object information, etc. In the local metrics, we describe how
to process local data objects for learning, and model training time and local
energy consumption.
Global Metrics. In the global metrics, SmartDL can obtain N mobile devices
that participate in the federated learning process, as N = {1, 2, ...N}. Each
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device i ∈ N is related to the reward Xi(k) in round k, where k = 0,1,2,....
Specifically, the reward is a normalized variable on [0, 1] and follows a specific
distribution with a mean µi. As mentioned above, these reward distributions
are i.i.d, as defined in the basic federated learning framework. Before the whole
learning process begins, the mean reward vector µ = (µ1, ..., µN ) is unknown.

In each round of learning, due to problems such as network outage, drained
batteries, etc., devices can join and leave at any given time. In the PUB/SUB
model, any newly arrived device can only subscribe to the next round of learn-
ing. In the case of a violation of the TTL T̈ in one learning round, the offline
devices are regarded as “sleep”. We use G(k) ∈ P(N ) to denote the set of
available mobile devices in a given round k, in which P(N ) is the power set of
N . Let PG(R) , P (G(k) = R), in which R ∈ P(N ) represents the distribution
of the available devices, which is also i.i.d, as defined in the federated learning
framework. Before the start of the training process, the distribution R is also
unknown. When the participating devices start to subscribe, SmartDL reveal
G(k) on the server side at the beginning of each training round k.

The central server selects m available devices (i.e., these available devices
belonging to G(k)) in each training round. Each subset of these devices creates
a subset of workers. We ensure that the size of the selected set is not greater
than m, that is, the server starts to calculate convergence and update models
after selecting m workers to publish in order to consider the convergence delay.
When We observe the set of available devices R, we use S(R) to represent the
set of all feasible groups, that is, S(R) , {S ⊆ R : |S| ≤ m}, in which |S|
represents the cardinality of set S. In a certain training round k, in addition to
selecting a group S(k) ∈ S(G(k)), the server also receives a reward represented
as Q(k), which is a weighted sum of the reward for each participated device,
that is, Q(k) ,

∑
i∈S(k) giXi(k), in which gi is the calculated gradient of device

i. We assume that the gradient gi is a known fixed positive number provided
by the models and the upper bound of gi is represented as gmax > 0. Besides,
the purpose of designing SmartDL is to maximize the expected time-average
reward within a given time horizon of K rounds, that is, E[ 1

K

∑K−1
k=0 Q(k)].

Local Metrics. In the local metrics, we first consider the modeling for to-be-
trained data objects. Let l = p(D, θ), where l represents the learnt model, p is
a process to learn the model l, D = {d1, d2, ..., dn} represents the training data
from n devices, and θ is the user-defined coefficient. Now, suppose we need
to remove some portion θ of private data dn of the n-th device. This means
that the mdel we actually learn is l

′
= p(D \ {dn} , θ). This model can easily

obtained by repeating the training process p on (D \ {dn} , θ), where θ defines
the percentage of attention to the newly created data objects.

Traditionally, retraining a complete model requires retraining all requested
data, which may generate a lot of energy consumption. At the same time, the
data loss of a single worker (or a small number of workers, not all in the entire
set) does not significantly change the predictability of the model. So we update
the existing model l to the desired model l

′
, or update the process p to the

process pforget. This “forget” process pforget can check dn much faster than
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retrained p, and meanwhile it can still converge, as follows:

l
′

= pforget(p(D, θ), {dn} , θ) = p(D \ {dn} , θ) (1)

This methodology is called decremental learning [18], similar to online learn-
ing. But in online learning, we only use new observed data to incrementally
update the existing model. In decremental learning, in addition to using new
observed data to update incrementally, we also need to remove such updates
via the reverse operation.

In SmartDL, we consider the actual scenario when federated learning is
deployed to the real devices, and mainly focus on the energy and latency from
local training and modeling. In order to understand the training time and the
estimated power consumption from one local training, we adopt models from
previous research [14].

For the completion time of one local training, the time required to com-
plete a round of training on different devices is different for a specific training
task. This is because the training completion time can be determined by three
factors: the size of the data objects, the training platforms, and the hardware
configuration of the mobile devices. Specifically, 1) the size of the data object
di, this is because different mobile devices can have different numbers of local
data objects. 2) Training platforms γ, this is because different clients can have
different training platforms. 3) Hardware configuration of the mobile devices
(eg., number of cores c, core frequency f). This is because the hardware config-
uration of the mobile device may be quite different even for the same training
platform. Therefore, we model the completion time of one local training as
follows:

ti =
γ ∗ di
cαfβ

(2)

where γ is a coefficient, which represents different training platforms. di is the
number of the data objects required for one round of training. c is the number
of cpu cores used in the training process. f is the core frequency. α and β
are the corresponding coefficients that can be obtained through the system
identification process. We find that the training completion time is directly
proportional to the size of the data objects, and inversely proportional to the
number of cpu cores and core frequency.

For the power consumption of one local training, the power consumption
can vary according to the number of cores and cpu frequency. Therefore, we
model the power consumption of a local training as follows:

Pi = PBL,Nc +

Nc∑
i

Pcore,Ui,fi (3)

Nc represents the number of cores enabled, PBL,Nc represents the baseline
CPU power when Nc cores are enabled, and Pcore,Ui,fi represents power incre-
ment of core i when working at frequency fi with utilization Ui. In addition,
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we model the single core power Pcore,Ui,fi as follows:

Pcore,Ui,fi = ζ ∗ fi ∗ Ui + ζbase (4)

in which, ζ is a coefficient of the corresponding power.
Thus, the energy consumption required to complete the overall training is

can summarized as the following equation:

e =

∫ T

fCPU Ū +
∑
j

ej (5)

where Ū is the average utilization. fCPU is an energy coefficient with a given
frequency. T is the training completion time, ej is a static energy profile for
each other devices on their specific power states, based on the state-of-the-art
state-machine models [19,20]. The energy consumption e is a linear combina-
tion of device utilization and energy states.

Next, we model the completion time required to complete the overall train-
ing. equation (2) reveals a linear correlation between the size of local training
data under certain model specifications. Therefore, the model for training com-
pletion time is now simplified as follows:

T = A ∗ F (w,M, D) +B,where fj is fixed (6)

where, in each round of training, the completion time is positively correlated
to a function F of the priority weight w, local modelM, and affected data size
D, under the current CPU frequency fj in each round of training. A and B are
correlation metrics. For all the above models, SmartDL can provide a decre-
mental learning version of local training based on the data and performance
(i.e., energy and latency models). Please note that We need to do correspond-
ing work for each type of specific model. In addition, SmartDL may choose
the wrong devices due to a prediction error. SmartDL can only fix the wrong
choice when another federated learning job initializes. The results indicate that
this may only affect the 95%-percentile performance. On average, compared to
other state-of-the practice, SmartDL can sustain a better federated learning
service. More discussion on fault tolerance can be found in Section 4.

3.3 Global Selection Optimization

We use a binary vector B(k) = (b1(k), ..., bN (k)) to represent whether a certain
device is selected to participate in the training in round k to describe the
decision of worker selection. bi(k) = 1 if device i is selected, then i ∈ S(k);
otherwise, bi(k) = 0. Thus, for all k ≥ 0, the action vector B(k) must satisfy∑N
i=1 bi(k) ≤ m.
Assuming that a vector of mean reward µ is known in advance, we can

always formulate the reward maximization in federated learning with minimum
selection fraction as an optimization problem [21]:
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Maximize
∑

R∈P(N )

PG(R)
∑

S∈S(R)

bS(R)
∑
i∈S

giµi

subject to:
∑

R∈P(N )

PG(R)
∑

S∈S(R):i∈S

bS(R) ≥ ri, i ∈ N

pi(R) ≤ Bi ∈ [0, 1], R ∈ P (N)

(7)

But the reward vector µ is unknown, so SmartDL not only needs to use
the estimated mean rewards (i.e., exploitation) to maximize the reward, but
also has to learn to obtain a more precise estimate of the mean rewards (i.e.,
exploration) to maximize the reward at the same time. In this way, we chose
an online optimization algorithm to deal with the exploitation and exploration
tradeoff problem (EE problem).

We treat the SmartDL selection optimization as an MAB problem. MAB
problem considers a fixed limited set of resources to be allocated between com-
peting (alternative) choices in a way that maximizes their expected gain, when
each choice’s properties are only partially known at the time of allocation [22].
In the multi-armed bandit problem, the main challenges we focus on are how
to maximize the reward with unknown mean reward distribution and out-of-
date worker, and how to minimize the energy consumption without violating
the TTL constraint.

In the case of uncertainty, the first key point to maximize the reward is
to quickly retrieve the reward distribution from top workers. We use ci(k) to
represent the number of times worker i selected at the end of round k, that
is, ci(k) ,

∑k
t=0 bi(t). When the system begins at k = 0, We set ci(−1) = 0.

At the same time, let µ̂i(k) be the observed mean rewards of worker i by the

end of round k, i.e., µ̂i(k) ,
∑k

t=0Xi(t)bi(t)

ci(k)
. If worker i has not been selected

before the end of round k (i.e., if ci(k) = 0), we set µ̂i(k) = 1 . We use µ̄i(k)
to represent the estimation of worker i in round k, which is given as follows:

µ̄i(k) , min{µ̂i(k − 1) +

√
3 log k

2ci(k − 1)
, 1} (8)

where µ̂i(k − 1) and
√

3 log k
2ci(k−1) correspond to exploitation and exploration,

respectively. Because the actual reward must be [0,1], the upper limit of the
above truncated version of the reward estimate is 1. Similarly, if ci(k−1) = 0,
then µ̄i(k) = 1. The detailed optimization analysis has been elaborated in
our previous work [23]. It is worth to note that the training environment
of federated learning is highly dynamic. For instance, the mobile devices can
randomly shutdown due to different issues such as out-of-battery or system
failure. The network condition is also not stable during the training process.
In addition, the devices can leave or join the federation at any time. Thus, the
possibility that a specific device always has the lowest reward score is relatively
low in real-world scenario. Next, we introduce our local learning and control
to analyze the local decremental learning and energy control in detail.
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Fig. 3: θ-LRU Memory Management.

3.4 Local Learning and Control

In order to solve the previously described privacy leak and heavy resource
usage issues, We use a local decremental learning, which respects the maxi-
mum rewards obtained by the selected workers. The main idea of our method
is that the training algorithm of the target model retains the intermediate
results during model calculation. We can effectively update the intermediate
in two ways: incremental method to merge new user data, and decremental
method to delete user data. As such, we are able to fine tune the local energy
configuration, as well as provide a more accurate profile of the local device for
next round of global selection.

We use the following four aspects to illustrate that SmartDL adapts learn-
ing algorithms into local training:

– Model Construction: Construct the prediction model based on the charac-
teristic of the specific learning algorithm.

– Update Procedure: Design the corresponding decremental and incremen-
tal update algorithms based on the model established in Model Construc-
tion, and save energy through the dynamic voltage and frequency scaling
(DVFS) tuning function.

– Space Complexity : Analyze the space and complexity of decremental and
incremental updating strategy of the design, with a θ-LRU memory man-
agement.

– Data Recovery : Analyze how to recover deleted user data from the stale
model.

Memory Management. To adapt a specific learning algorithm into the lo-
cal SmartDL middleware, SmartDL first rebuilds this algorithm into a decre-
mental version. This process is usually done offline, and SmartDL explores
this decremental learning algorithm as a local learning algorithm library. The
decremental learning algorithms focus on the incremental/decremental up-
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Algorithm 1 Update procedure for Personalized PageRank.

Input: history matrix Yu, similarity matrix L, concurrency matrix C, item interaction
count vector v

1: function update(Yu,L, C, v)
2: v← v + Yu

3: while item pair (i1, i2) ∈ Yu do
4: Ci1i2 ← Ci1i2 + 1

5: while item i1 ∈ Yu do
6: while item i2 ∈ Ci1 do
7: Li1i2 ← Ci1i2/(vi1 + vi2 − Ci1i2 )
8: CPU Freq(1) //Tune up DVFS

9: function forget(Yu,L, C, v)
10: v← v−Yu

11: while item pair (i1, i2) ∈ Yu do
12: Ci1i2 ← Ci1i2 − 1
13: CPU Freq(-1) //Tune down DVFS

14: while item i1 ∈ Yu do
15: while item i2 ∈ Ci1 do
16: Li1i2 ← Ci1i2/(vi1 + vi2 − Ci1i2 )
17: CPU Freq(0) //Reset DVFS

18: function predict(k, j,L)
19: return top-k items from Lj

dates, associated with local energy control. Moreover, in order to reduce the
frequency of page replacement in local decremental learning, we adopt a new
θ-LRU memory management as shown in Figure 3. LRU (Least Recently
Used) [24] is a commonly used page replacement algorithm. It is based on
the idea of ”if a certain data has not been accessed in the recent period,
then the possibility of it being accessed in the future is also very small”. The
LRU algorithm selects the most recently unused pages and eliminates them.
However, When being notified with a degree of “forget”, or the user-defined
variable θ, the SmartDL middleware adapts a θ-LRU as shown in Figure 3,
that deletes the specific user data and only replaces θ-percent of allocated
pages recently used. This algorithm can significantly reduce the frequency of
page replacement, as well as the number of swaps. If the replaced pages are
not an integer, we use the method of rounding up. SmartDL keeps track of
the level of forgetness in the decremental learning algorithms using data re-
covery policies, in order to prevent aggressive forgetting and the convergence
failure. Next, we present SmartDL on three learning algorithm cases, namely
Personalized PageRank, Tikhonov Regularization and K-Nearest Neighbors,
which are widely used in the real-time mobile-based machine learning, in or-
der to highlight the design and implementation of SmartDL in the local layer,
and show that SmartDL can be easily adapted to effectively support other
algorithms and systems.

Case 1: Personalized PageRank. Personalized PageRank (PPR) [25] is the
first algorithm proposed by Google that uses simple hyperlinks to calculate the
scores of web pages, thereby ranking web pages. This algorithm is similar to
the recommendation algorithm [26–29]. They both calculate the distance be-
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tween users from the perspective of user-item correlation. For example, the
algorithm records the browsing history of each device in web page recommen-
dation. These pairs of co-occurring pages are ranked and formed the basis for
recommendation later. The input data of the simplest form for PPR includes

a binary history matrix Y ∈ {0, 1}|A|×|I|, which represents the interactions
between a set of devices A and a set of items I. If the device j interacts with
the item i, the entry Yji is equal to 1, otherwise it is equal to 0.
Model Construction. Personalized PageRank is composed of a similarity matrix
L ∈ R|I|×|I|, which denotes the interaction similarity between pairs of items.
A common training method for this model is to first compute the concurrency
matrix C = YTY, which denotes the number of users interacting with each
pair of items. Besides, we need a vector v =

∑
j∈A Yj to denote the number of

interactions for each item (the sum of the rows of Y). Next, when we need to
get the similarity matrix L, we can calculate it by checking the co-occurrence
counts. The co-occurrence matrix [30] can calculate many similarity measures
between items. It is a better choice to calculate the Jaccard similarity Li1i2
between items i1 and i2 by Li1i2 = Ci1i2/(vi1 + vi2 − Ci1i2). The results can
be achieved by querying the similarity matrix L, as described in the example
of privacy issue in Figure 1. As shown in the PREDICT function (line 19) in
Algorithm 1, we retrieve recommendations of item pairs by querying the most
similar items in each item, and calculate the preference estimates based on the
weighted sum between the similarities of the item and the corresponding user
history to generate the items to recommend for specific devices [31].
Update Procedure. We need the following three intermediate data structures
including: 1) the similarity matrix L, 2) the concurrency matrix C and 3) the
item interaction count vector v, to enable the incremental and decremental
updates for Personalized PageRank.

The FORGET function (lines 10-17) of Algorithm 1 details the entire pro-
cess of removing the u-th user data (corresponding to the u-th row Yu in the
history matrix Y). We update the corresponding co-occurrence count Ci1i2
by traversing all item pairs (i1, i2) in the user history Yu. Finally, we need
to traverse each item in the user history and renew the similarity matrix in
corresponding row Li1 . The working principle of the incremental update of
the model, explained in the UPDATE function (lines 2-8) of Algorithm 1 is
similar, the difference is that we increase the co-occurrence count instead of
reducing the co-occurrence count.
Space Complexity. Personalized PageRank is composed of a similarity matrix
L ∈ R|I|×|I| with the space quadratic of the number of items. Since we need
to protect the concurrency matrix C ∈ V|I|×|I| and the vector v ∈ V|I|, we
need to adjust |Yu|2 of the concurrency matrix, and the |Yu| · |I| recalculation
entries in the similarity matrix L in the worst case. The intermediate data
structure of the decremental learning algorithm double the required memory,
and the update has a quadratic complexity of O(|I|2) in the worst case. In
practice, for example, given a θ = 30% configuration and PPR on I = 1000
items, SmartDL uses θ-LRU to reduce up to 378 page swaps in memory re-
placement during a single round. However, most users need to interact with
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Algorithm 2 Update procedure for Tikhonov Regularization.

Input: z←MTr,QR← qr(MTM + λI), user observation Mu

1: function update(Mu, ru,Q,R, z)
2: z← z + Muru
3: QR← qrupdate(Q,R,QTMu,Mu)

4: solve Rh = QTz for h
5: CPU Freq(1)

6: function forget(Mu, ru,Q,R, z)
7: z← z−Muru
8: QR← qrupdate(Q,R,−QTMu,Mu)

9: solve Rh = QTz for h
10: CPU Freq(-1)

11: function predict(mnew,h)
12: return hTmnew

very few items in the real world data. In addition, we only retain the top-k
entries of each item in L. At the same time, we introduce bounds on the max-
imum number of interactions to reduce the memory usage required for the
intermediate data structures and the update complexity [16]. The number of
energy control function calls is linear to the number of function calls for incre-
mental/decremental updates. Although SmartDL uses the similarity matrix to
find corresponding users, it may selectively reduce the data. As the training
proceeds, the new data overwrite the old data. Moreover, the new data could
be detected after a few training rounds. The detailed analysis is discussed in
Section 4.

Data Recovery. We analyze how to recover deleted user data from the stale
model by deleting individual user data from the database. When the original
matrix Y deletes the row corresponding to the removed user, the matrix Y
becomes an updated matrix Ŷ. If we still have access to the similarity matrix L
calculated from the original matrix Y, then we can compute the corresponding
similarity matrix L̂ from the updated matrix Ŷ and compare it with the stale
similarity matrix L. All items i with differences in entries of the similarity
matrices (e.g., ∃j Lij 6= L̂ij) are exactly the items that were included in the
interaction history of the deleted device. In this way we can recover the deleted
data.

Case 2: Tikhonov Regularization. Tikhonov regularization [32] is a tech-
nique widely used to analyze multiple regression data that suffer from mul-
ticollinearity. The input data of this model is the matrix M ∈ Rs×d of s d-
dimensional observations, and the corresponding digital target variable r ∈ Rs.
Under the principle of ensuring generality, we assume that the data of a spe-
cific user i is captured in the input i-th row vector Mi. If there is more than
one row of data representing a particular user, we can simply perform the
decremental update process several times.

Model Construction. The solution of the normal equation h = (MTM +
λI)−1MTr is a common method to calculate the Tikhonov regularization
model in the form of the weight vector h. As shown in the PREDICT function



Title Suppressed Due to Excessive Length 17

(line 12) of Algorithm 2, we can use the weight vector as the dot product to
calculate the estimate of a new observation mnew: r̂new = hTmnew.
Update Procedure. We use an effective calculation method to explain the pro-
cess of deleting the data of a certain device u (corresponding to the u-th row
Mu of matrix M) from the Tikhonov regularization model:

h = (MTM−MT
uMu + λI)−1(MTr−Muru) (9)

In this way, we retain two intermediates in the calculation, namely the vector
z = MTr and a QR factorization QR = qr(MTM+λI) of the regularized gram
matrix. First, we have to use the method of subtracting Muru to recalculate
z, and we have to update the QR decomposition Q and R through using the
fast rank-one update algorithm [33] with −QTMu and Mu as parameters.
Then, we can use the FORGET function (lines 7-10) of Algorithm 2 to solve
the updated model h. If we use addition instead of subtraction, we can get an
incremental update algorithm, as shown in the UPDATE function (lines 2-5)
of Algorithm 2.
Space Complexity. We need to maintain two additional matrices Q ∈ Rd×d
and R ∈ Rd×d as well as the vector z ∈ Rd in the decremental variant of
the model. This means that the space required for Tikhonov regularization
is quadratic in the number of feature number d and has nothing to do with
the number of examples. It is usually much less than the number of exam-
ples s. An decremental/incremental update requires scaling and adding to z
(2d operations), the matrix vector multiplication QTMu (d2 operations), the
rank-one QR update [33] (26d2 operations), the matrix vector multiplication
QTz (d2 operations), and solving for h by reverse substitution (d2 operations).
SmartDL introduced the FORGET function (lines 7-10) of Algorithm 2. There-
fore, in this linear correlated algorithm, θ-LRU can significantly reduce more
page errors. All in all, the complexity of our update is O(d2), which improves
from the original retraining O(sd2) complexity.
Data Recovery. Compared with other methods, it is more difficult to obtain
information about the deleted device feature vector Md from the model h.
Although we can constrain the candidate vectors in the subspace defined by
hTMd = rd via accessing the complete target variable r, this can generate a
lot of prediction errors, so we need to know more about M to further control
the candidate vector space.
Case 3: K-Nearest Neighbors. K-Nearest Neighbors (K-NN) [34] is a
statistical algorithm for classification, which assigns the labels of the k nearest
neighbors to the unknown observations. In this case, we use a general method,
locality sensitive hashing (LSH) [35], to speed up the search for the nearest
neighbors. The input data of this model includes a matrix M ∈ Rs×d of s d-
dimensional observations, and the corresponding target variable r ∈ {1, ..., a}s
which represents the assignments of the corresponding a categorical labels. We
again declare that the i-th row vector Mi corresponds to the observation of a
specific user i.
Model Construction. The algorithm builds an index on the data and uses the
approximate similarity of the high-dimensional space to search. This index
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Algorithm 3 Update procedure for K-Nearest Neighbors.

Input: hash tables E1, ..., Eh, projection matrices Ψ1, ..., Ψh, observation Mu

1: function update(Mu, Ψ, E)
2: while h = 1...H do
3: yuh = sgn(MuΨh)
4: add Mu from bucket yuh in hash table Eh

5: CPU Freq(1)

6: function forget(Mu, Ψ, E)
7: while h = 1...H do
8: yuh = sgn(MuΨh)
9: remove Mu from bucket yuh in hash table Eh

10: CPU Freq(-1)

11: function predict(Mnew, Ψ, E)
12: U ← a binary heap with the k closest examples
13: while h = 1...H do
14: yuh = sgn(MuΨh)
15: update U for all examples from bucket yuh
16: return majority label from k examples in U

consists of several hash tables, among which the observations that are close ac-
cording to Euclidean distance are likely to eventually appear in the same hash
bucket. We calculate the bucket index by using random projections as hash
function. We calculate the H hash table E1, ..., EH by using the y-dimensional
bucket indexes. We separately generate a Gaussian random matrix Ψh accord-
ing to each hash table Eh, and use sgn(MΨh) to make this matrix randomly
project our data and the resulting bit vectors represent the hash keys. We use
the key sgn(MiΨh) in the hash table Eh to assign each row of Mi from M to its
corresponding bucket. For each hash table Eh, we calculate the bucket index
yh = sgn(MnewΨh) and collect all observations from this bucket to collect its
nearest neighbors, thereby assigning labels to the invisible observation Mnew.
Then, we calculate the k nearest neighbors of Mnew among the retrieved ob-
servations, and assign most of the labels to Mnew as the predicted label l̂new.
As shown in the PREDICT function (lines 12-16) of Algorithm 3, this can be
effectively achieved by using the k closest examples to maintain the binary
heap.

Update Procedure. As described in the FORGET function (lines 7-10) of Al-
gorithm 3, deleting the existing observation Mu of a user u from our index
works. We calculate the bucket index yuh of Mu by the random projection
sgn(MuΨh), and delete Mu from bucket yuh in hash table Eh. We repeat this
process for all hash tables. The incremental update works in a similar way, as
shown in the UPDATE function (lines 2-5) of Algorithm 3.

Space Complexity. Our method does not need extra space, because it only uses
the hash tables E1, ..., Eh and the projection matrices Ψ1, ..., Ψh, which are
always necessary to derive predictions from the model. The complexity of the
decremental update is O(Hdy), because it obtains a projection matrix of size
d×y and the feature vector of dimensionality d, and performs H matrix-vector
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Table 1: Hardware Information of Mobile Devices

Device Android Version Number of CPU cores Maximum CPU Frequency

Honor 8 Lite 8.0.0 8 2.112GHz
Nexus 6 5.0.0 4 2.700GHz
Lenovo 5.0.2 4 1.040GHz
ZTE 5.1.1 4 1.094GHz

Xiaomi 5.1.1 6 1.440GHz

multiplication of the two to determine the bucket indices, plus H subsequent
hashmap insertion.

Data Recovery. It is very simple to recover removed data from the model, this
is because that the model stores a copy of the feature vector.

It is worth to note that. SmartDL may take some effort to change decre-
mental and incremental updates for a specific case. However, SmartDL can
provide the design and evaluation of the representative models that are com-
monly used which can cover most of the usage cases. Moreover, before the
overall training process starts, the task publisher can directly adopt an exist-
ing or design a new corresponding decremental/incremental strategy and then
triggers the learning procedure. After that, SmartDL can effectively manage
the system in order to achieve high energy efficiency and privacy protection.

4 Evaluation

SmartDL is designed to intelligently balance the energy efficiency and data
privacy for on-device federated learning while guaranteeing the model accu-
racy. In this section, we introduce the experimental setup and then discuss the
corresponding evaluation results in detail from different perspectives.

4.1 Experimental Setup

We evaluate the effectiveness of SmartDL with the following two platforms:
physical testbed and simulation. For the physical testbed, we prototype SmartDL
based on mobile devices with different hardware configurations. Specifically,
Table 1 shows the hardware information of the mobile devices adopted in
the experiments. The on-device training process is implemented based on the
deep learning framework DL4J [36]. Moreover, a Monsoon Power Monitor [37]
is used to measure the power consumption of the participating devices dur-
ing the local training process. In addition, for the scalability evaluation, we
also establish a simulation platform. Specifically, we use various independent
docker images to emulate different mobile devices, and simulate the Feder-
ated Learning training environment by deploying hundreds of corresponding
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FL docker images. The docker images of the corresponding experiments are
provided on DockerHub 1.
Baselines: We use the following two baselines to compare with SmartDL in
the evaluation process.

– Original: On the server side, model aggregation is conducted when all the
participating devices complete the local training process. Each participated
mobile device leverages all the training data within it for local training
without performing incremental or decremental learning.

– NewFL: On the server side, NewFL adopts the same aggregation approach
as Original. However, on the device side, only the newly generated data
objects are used in the local training process.

Models and Datasets: The following models and datasets are adopted in
order to evaluate the effectiveness of SmartDL in different scenarios. For the
comparison with Original, we use the following four models including: 1) Per-
sonalized PageRank, 2) K-Nearest Neighbors, 3) Multinomial Näıve Bayes
and 4) Tikhonov Regularization. In addition, we evaluate the effectiveness of
SmartDL on different models using different datasets. Specifically, the descrip-
tion of the datasets for the corresponding models is as follows:

– Personalized PageRank: 1) movie ratings (movielens) and 2) the joke rat-
ings (jester) [38].

– K-Nearest Neighbors and Multinomial Näıve Bayes: 1) mushrooms classi-
fication (mushrooms), 2) puishing websites (puishing) and 3) cartographic
forest data (covtype) [39].

– Thikonov Regularization: 1) housing prices prediction (housing, cadata),
2) music year prediction (YearPredictionMSD) [39].

Moreover, for the comparison with NewFL, we use a CNN network which
contains a convolutional layer and a fully connected layer based on the Cifar-10
dataset [40]. It is important to note that It is important to note that there are
existing works about the proof of convergence of federated learning and decre-
mental learning [41]. These existing methodologies can be applied to conduct
the convergence analysis in SmartDL. For the privacy leakage avoidance proof.
We will try to conduct it in our future work. Moreover, in order to evaluate the
effectiveness of SmartDL on convergence guarantee and privacy leakage avoid-
ance, we conducted different experiments in the evaluation section (e.g., Figure
6 shows the model accuracy of SmartDL and the original federated learning
scheme. Figure 9 shows the privacy protection result of different schemes.).

4.2 Results

4.2.1 Comparision of Training Completion Time

We conduct the local training process on off-the-shelf mobile devices and eval-
uate the training completion time of different schemes on different models with

1 https://hub.docker.com/r/goodlab/deal
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Fig. 4: Training completion time of different application scenarios with differ-
ent schemes.

various datasets. Specifically, for each experiment, we randomly select twenty
users and report the average training completion time in different scenarios.
Figure 4 shows the experimental results under different CPU frequencies on
Huawei Honor 8 Lite.

Specifically, Figure 4(a) shows the results of training completion time of
Personalized PageRank model on the movielens and jester datasets. In the
movielens datasets, SmartDL achieves one and two orders of magnitude faster
than NewFL and Original, respectively. This is because SmartDL not only
trains less data than Original, but also SmartDL forgets some updates during
training process, thus greatly reducing the overall training completion time.
Similarly, Figure 4(b) shows the results of K-Nearest Neighbor model on the
mushrooms and phishing datasets. SmartDL has the similar advantage on the
training completion time, which is one order of magnitude and three orders of
magnitude faster than NewFL and Original, respectively. In addition, when we
allow to use aggressive DVFS on the mobile device, SmartDL in the phishing
dataset can achieve four orders of magnitude better performance than Original.
This is mainly due to the following two reasons. First, the phishing dataset is
very large, and during the overall training process, SmartDL has higher I/O
intensity than other baselines, which results in higher power saving potential.
Second, original always trains the full dataset, The memory footprint of the
dataset is much larger than SmartDL.

In the other two cases, Figures 4(c) and 4(d) both show that compared
with the two baselines, SmartDL can achieve two to four orders of magnitude
faster in training completion time. However, the performance of SmartDL
slowly converges to that of NewFL when the data are more coarse-grained such
as the YearPredictionMSD dataset. Yet, SmartDL always achieves a better
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Fig. 5: CDF of the convergence time of SmartDL and Original in different
application scenarios with default governor.

modeling performance than NewFL because it can capture feature from older
data objects.

4.2.2 Comparision of Convergence Time

We deploy hundreds of FL docker images to simulate the participated mobile
devices and the corresponding training environment. Figure 5 shows the con-
vergence time of SmartDL and Original in different application scenarios with
default governor. The CDF result of Figure 5(a) shows the trend of the conver-
gence time of SmartDL and Original on Personalized PageRank model with
the default power governor (interactive). Concretely, it can be seen that in the
Movielens dataset, 92% of the simulated devices take shorter time to converge
with SmartDL than the Original scheme. The median values of convergence
time for SmartDL and Original are 158ms and 94,988ms (normalized to 0.18
and 0.55) respectively. For the Jester dataset, 85% of the simulated devices
show that SmartDL converges faster compared with Original. The median
value of the convergence time for SmartDL and Original are 1ms and 6,598ms
(normalized to 0.25 and 0.36) in this case.

The CDF result of Figure 5(b) also shows the similar result. In the Mush-
rooms dataset, the median value of the convergence time for SmartDL and
Original are 400ms and 2,931,949ms (normalized to 0.31 and 0.17). In the
Phishing dataset, the median value of the convergence time for SmartDL and
Original are 277ms and 2,403,335ms (normalized to 0.35 and 0.26). It shows
that in the K-Nearest Neighbors model, the convergence time of SmartDL of
more than half of the mobile devices is four orders of magnitude faster than
Original.
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Fig. 6: Accuracy of SmartDL and Original on Tikhonov Regularization Model
with different datasets.

The CDF result of Figure 5(c) shows the trend of the convergence time of
SmartDL and Original on the Multinomial Näıve Bayes model. Specifically, in
the Mushrooms dataset, the median value of the convergence time for SmartDL
and Original are 5ms and 9,365ms(normalized to 0.3 and 0.13). In the Phishing
dataset, the median value of the convergence time for SmartDL and Original
are 6ms and 19,317ms (normalized to 0.33 and 0.14). In the Covtype dataset,
the median value of the convergence time for SmartDL and Original are 7ms
and 388,620ms(normalized to 0.6 and 0.1). This shows that in this model, the
convergence time of SmartDL of more than half of the mobile devices is three
orders of magnitude faster than Original.

The CDF result of Figure 5(d) are similar to the previous three mod-
els, which also shows that in our simulation, compared with Original, the
advantage of SmartDL is faster in training the converged model. This is be-
cause SmartDL allows the server to communicate with the participated mobile
devices through the SUB method on a regular basis, and initiates central con-
vergence when it receives more than half of the SUB signals from all selected
staff or through TTL. SmartDL does not need to wait for all models to be
updated. However, it can be seen that the effect of the tail of the convergence
time is not good enough.

4.2.3 Comparison of Model Accuracy

Figure 6 compares the accuracy of Tikhonov regularization model on differ-
ent datasets. The result shows that the model accuracy of SmartDL is only
9% lower than that of Original in the phishing dataset. In these datasets,
the housing dataset shows the largest reduction in the model accuracy of
SmartDL compared with that of Original, which decreases by 12%. For the
remaining datasets, the accuracy of SmartDL is almost the same as that of
Original, which are all about 3%. The results show that, while guaranteeing
the accuracy of the model, SmartDL effectively improves the learning speed
for on-device federated learning, and it also improves the energy efficiency of
federated learning on the devices from the subsequent results.
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(a) Personalized PageRank.
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(b) K-Nearest Neighbors.
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(c) Multinomial Näıve Bayes.
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Fig. 7: Energy consumption during the training process with different schemes
in various application scenarios.

4.2.4 Comparison of Energy Consumption

As mentioned in Section 3, SmartDL allows adaptive power control in the
training algorithm rather than having a less training time. Here, we provide
an energy consumption analysis based on our measured data under different
CPU frequencies on the Huawei Honor 8 Lite shown in Figure 7. A common
theme behind the power saving is that, no matter which baselines, the total
energy consumed gradually decreases with the CPU frequency.

Figure 7(a) shows the results of the energy consumption for training of
Personalized PageRank model on the movielens and jester datasets. In the
movielens dataset, it can be seen that SmartDL can save 253.2uAh of energy
and 3,687.1uAh of energy, as compared to NewFL and Original, respectively.
In the jester dataset, SmartDL can both save about 300uAh compared to
NewFL and Original.

Figure 7(b) shows the results of the energy consumption for training of
K-Nearest Neighbors model on the mushrooms and phishing datasets. It can
be seen that SmartDL can consume an order of magnitude less energy than
NewFL, saving about 250uAh of energy. Compared to Original, SmartDL
achieves energy saving in the amount of approximately 110,000uAh.

Figure 7(c) shows the results of the energy consumption for training of
Multinomial Näıve Bayes model on mushrooms, phishing, and covtype datasets.
Compared to NewFL, In the three datasets, SmartDL can both consume two
to three orders of magnitude less energy than NewFL, saving about 263uAh
of energy. In the mushrooms and phishing datasets, SmartDL consumes three
orders of magnitude less energy than Original. In the the covtype dataset,
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Fig. 8: Energy consumption of SmartDL and Original on Tikhonov Regular-
ization Model with different datasets.

SmartDL consumes four orders of magnitude less energy than Original, saving
about 17,908uAh of energy. Because the cardinality of the covtype dataset is
much larger than the mushrooms and phishing datasets, the training time and
power consumption required for a whole retraining increase accordingly.

Figure 7(d) shows the results of the energy consumption for training of
Tikhonov regularization model on the housing, cadata, and YearPrediction-
MSD datasets. In the housing dataset, SmartDL saves only 6.7uAh of energy
compared to Original. This is because the housing dataset size is too small,
so it consumes less energy for retraining. In the YearPredictionMSD dataset,
SmartDL saves 77,497.6uAh of energy compared to Original.

Figure 8 compares the energy consumption of SmartDL and Original on
the Tikhonov regularization model for six different datasets: housing, mush-
rooms, phishing, cadata, YearPreditionMSD and covtype. It can be seen that
no matter what kind of dataset, SmartDL consumes at least more than one
order of magnitude less energy compared to Original. Some datasets can even
save three orders of magnitude of energy.

In short, compared to Original and NewFL, SmartDL can save up to
81.7% and 80.6% of energy cost on average, respectively. With the smallest
dataset housing in the Tikhonov regularization model, compared with Orig-
inal, SmartDL still saves 75.6% of energy. In addition, due to the different
size of datasets in each model, the behave of SmartDL can change accordingly
when using different datasets.

4.2.5 Comparison of Privacy Protection

Currently, there is no commonly used methodology to quantify the privacy
of mobile-based deep learning [4,42]. In order to evaluate the effectiveness
of privacy protection, we propose a new metric. Specifically, in this case, we
measure the privacy through calculating the proportion of the new data objects
in the local training dataset. This is for the reason that, according to our
discussion in Section 2 that when we need to delete some user data, federated
learning can still reveal private user information based on the previous model
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Fig. 9: Privacy under three different baselines.

clustering. In other words, when we delete old data, data privacy leak may
occur. Therefore, in order to measure the privacy situation, we add 10 new
data objects in each round of training, and observe the proportion of these
10 new data objects to the overall training data objects in each round. The
higher the proportion, the better the privacy protection effect.

It can be seen from Figure 9 that, for NewFL, its effect is the best, it only
trains new data, so its proportion is always 100%. For Original, because it
needs to train all the data (10 new data and the previous old data), as the
number of training increases, its proportion value continues to decrease. For
SmartDL, there is a phenomenon of jitter, this is because that SmartDL in-
cludes decremental learning and incremental learning. In real life, we usually
delete old data, so SmartDL pays less and less attention to old data. In addi-
tion, new data always overwrites old data. However, when we need to delete
new data, SmartDL can also delete these data in a specific training round.

5 Related Work

Our work is closely related to the following three major research topics, decre-
mental learning, distributed learning and federated learning.

5.1 Decremental Learning

Decremental learning is similar to the corresponding approaches used for in-
cremental data processing [43–46] for the reason that they are both constantly
updated during the training process. Ewen et al. [43] propose an approach to
integrate parallel dataflows with incremental iterations. Moreover, they also
provide an extension to the programming model for this workset iteration,
so this improved dataflow system not only maintains a transparent and uni-
fied dataflow abstraction, but also has strong competitiveness with specialized
systems. Schelter et al. [44] propose an optimistic recovery mechanism us-
ing algorithmic compensations, which takes advantage of the robustness and
self-correcting nature of a large class of fix-point algorithms used in machine
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learning and data mining. This optimistic recovery mechanism achieves op-
timal failure-free performance while ensuring the overhead required for fault
tolerance. McSherry et al. [45] propose a new model called differential compu-
tation, which extends the traditional incremental calculation to allow arbitrary
nested iteration, and explain how to effectively implemented differential cal-
culation in the context of a declarative data-parallel dataflow language by
referring to a publicly available prototype system called Naiad. Previous stud-
ies all require a merge operation to integrate the updated data into the global
results, but the difference of decreasing learning is that it also requires an in-
verse operation to delete the old data, but many existing studies do not cover
this method.

5.2 Distributed Learning

Distributed learning is becoming more and more popular. It uses data from
different places to effectively train different neural network models, which has
attracted a lot of attention. Previous studies [47–57] have improved the per-
formance of distributed learning systems from different perspectives. In order
to maximize the overall performance of tasks in the cluster, Zhang et al. [47]
design a scheduling algorithm to approximate the training performance of
deep learning jobs. Li et al. introduce a method to manage asynchronous
data communication between different working nodes with a parameter server
framework that uses distributed learning, and this framework supports elastic
scalability, a flexible consistency model and continuous fault tolerance. So et
al. [49] propose a method to ensure the safety of the training process, which
can efficiently parallelize the distributed training process and keep the training
information (such as training data and model) private. Bao et al [50] design a
deep learning-driven machine learning cluster scheduler, which maximizes per-
formance and minimizes interference by placing different jobs in corresponding
different machines. Jiang et al. [51] use the sketch-based method to compress
the gradient values in order to accelerate the distributed learning process.
Kraska et al. [52] design a novel system that can bridge the gap between
end-users and distributed learning system. They not only provide a simple
declarative way to specify machine learning tasks, but also provide a novel op-
timizer to select the corresponding learning algorithms. Mai et al. [53] design
a host-based communication layer to improve the network performance in a
distributed learning system. This system uses two main techniques including
traffic reduction and traffic management. Moreover, Sun et al. [54] study dis-
tributed learning as a multi-agent system problem. Although these methods
can effectively improve the performance of distributed learning systems, they
cannot be directly used to federated learning systems based on mobile devices.
The placement of training data and the execution of the training process are
usually in the central servers in a distributed system. But in the federated
learning system, this process is mainly carried out on mobile devices. There-
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fore, compared with servers located in the data center, mobile devices have
higher limitations in terms of computing capacity and battery lifetime.

5.3 Federated Learning

Federated learning is proposed to enable multiple mobile devices to collabora-
tively train a shared deep learning model while ensuring the privacy of data [1,
15,58–65]. Lalitha et al. [1] design a distributed learning algorithm for training
models on the user networks to achieve complete decentralization. Bonawitz et
al. [15] build a production system based on Tensorflow for federated learning
in the field of mobile devices. Bonawitz et al. [61] also design a novel, high
communication efficiency, failure-robust protocol for the safe aggregation of
high-dimensional data. In order to reduce the cost of uplink communication,
Konecny et al. [58] propose two methods (structured updates and ketched
updates) to improve the communication efficiency in the federated learning
system. In order to solve the problems of fault tolerance, high communica-
tion cost and stragglers in distributed multi-task learning, Smith et al. [59]
proposed a system-aware optimization method to achieve better performance.
McMahan et al. [60] design a practical method for the federated learning of
deep networks based on iterative model averaging. Sprague et al. [62] propose
a new algorithm, asynchronous federated learning, and study its convergence
speed of training on multiple edge devices, and compare this asynchronous
method with the previous synchronous method. Wang et al. [64] first theoret-
ically explain the convergence bound of distributed gradient descent, and in
order to minimize the loss function under a given resource budget, they also
propose a control algorithm to determines the trade-off between local update
and global parameter aggregation. Wu et al. [65] adopt a data-driven approach
to introduce the opportunities and design challenges faced by Facebook in or-
der to enable machine learning inference locally on smartphones and other
edge platforms. Previous research mainly focus on reducing the communica-
tion overhead during the training process, and analyze the model convergence
from a theoretical perspective. However, the problem of effectively reducing
the energy consumption while ensuring the model accuracy has not been fully
studied, which is essential for battery-powered mobile devices.

6 Conclusion

This paper proposes SmartDL, an energy efficient learning framework that
effectively reduces the energy footprint in a Federated Learning system with
a decremental learning design. SmartDL improves the energy efficiency of the
training process with a hierarchical design including two layers. The first layer
selects a subset of workers with sufficient capacity in order to maximize the
rewards, i.e., energy saving potentials. The second layer is made up of a spec-
ified decremental learning algorithm that actively provides a decremental and
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incremental update functions. At the same time, it adaptively tunes the DVFS
of local mobile device. SmartDL is prototyped in containerized services with
modern smartphone profiles and evaluated with different learning benchmarks
with real-world traces. The evaluation result shows that SmartDL achieves
75.6%–82.4% energy saving in different datasets on different models. At the
same time, it achieves a speed up of 2-4 orders of magnitude comparing with
the baseline. In the future work, we will evaluate SmartDL with more appli-
cations and models on more smartphones at scaling-out.
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